Minimal Resultant Systems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimal solution of fuzzy linear systems

In this paper, we use parametric form of fuzzy number and we converta fuzzy linear system to two linear system in crisp case. Conditions for the existence of a minimal solution to $mtimes n$ fuzzy linear equation systems are derived and a numerical procedure for calculating the minimal solution is designed. Numerical examples are presented to illustrate the proposed method.

متن کامل

Numerical Computation of Minimal Polynomial Bases: A Generalized Resultant Approach

We propose a new algorithm for the computation of a minimal polynomial basis of the left kernel of a given polynomial matrix F (s): The proposed method exploits the structure of the left null space of generalized Wolovich or Sylvester resultants to compute row polynomial vectors that form a minimal polynomial basis of left kernel of the given polynomial matrix. The entire procedure can be imple...

متن کامل

Differential Resultant, Computer Algebra and Completely Integrable Dynamical Systems

The hierarchy of integrable equations are considered. The dynamical approach to theory of nonlinear waves is proposed. The special solutions (nonlinear waves) of considered equations are derived. We use powerful methods of computer algebra such as differential resultant and others.

متن کامل

minimal solution of fuzzy linear systems

in this paper, we use parametric form of fuzzy number and we converta fuzzy linear system to two linear system in crisp case. conditions for the existence of a minimal solution to $mtimes n$ fuzzy linear equation systems are derived and a numerical procedure for calculating the minimal solution is designed. numerical examples are presented to illustrate the proposed method.

متن کامل

Multihomogeneous resultant matrices for systems with scaled support

Constructive methods for matrices of multihomogeneous (or multigraded) resultants for unmixed systems have been studied by Weyman, Zelevinsky, Sturmfels, Dickenstein and Emiris. We generalize these constructions to mixed systems, whose Newton polytopes are scaled copies of one polytope, thus taking a step towards systems with arbitrary supports. First, we specify matrices whose determinant equa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1995

ISSN: 0021-8693

DOI: 10.1006/jabr.1995.1315